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ABSTRACT

Objectives: The aim of this study was to investigate predictors of progressive cognitive deteriora-
tion in patients with suspected non–Alzheimer disease pathology (SNAP) and mild cognitive
impairment (MCI).

Methods: Wemeasured markers of amyloid pathology (CSF b-amyloid 42) and neurodegeneration
(hippocampal volume on MRI and cortical metabolism on [18F]-fluorodeoxyglucose–PET) in 201
patients with MCI clinically followed for up to 6 years to detect progressive cognitive deteriora-
tion. We categorized patients with MCI as A1/A2 and N1/N2 based on presence/absence of
amyloid pathology and neurodegeneration. SNAPs were A2N1 cases.

Results: The proportion of progressors was 11% (8/41), 34% (14/41), 56% (19/34), and 71%
(60/85) in A2N2, A1N2, SNAP, and A1N1, respectively; the proportion of APOE e4 carriers
was 29%, 70%, 31%, and 71%, respectively, with the SNAP group featuring a significantly
different proportion than both A1N2 and A1N1 groups (p # 0.005). Hypometabolism in SNAP
patients was comparable to A1N1 patients (p 5 0.154), while hippocampal atrophy was more
severe in SNAP patients (p 5 0.002). Compared with A2N2, SNAP and A1N1 patients had
significant risk of progressive cognitive deterioration (hazard ratio 5 2.7 and 3.8, p 5 0.016
and p , 0.001), while A1N2 patients did not (hazard ratio 5 1.13, p 5 0.771). In A1N2 and
A1N1 groups, none of the biomarkers predicted time to progression. In the SNAP group, lower
time to progression was correlated with greater hypometabolism (r 5 0.42, p 5 0.073).

Conclusions: Our findings support the notion that patients with SNAP MCI feature a specific risk
progression profile. Neurology® 2015;84:508–515

GLOSSARY
Ab 5 b-amyloid; Ab42 5 b-amyloid 1–42; AD 5 Alzheimer disease; ADNI 5 Alzheimer’s Disease Neuroimaging Initiative;
EU 5 European Union; FDG 5 [18F]-fluorodeoxyglucose; FTD 5 frontotemporal dementia; KUHH 5 Karolinska University
Hospital Huddinge;MCI5mild cognitive impairment; MMSE5Mini-Mental State Examination;MUCH5 Klinikum rechts der
Isar der Technischen Universität München; SNAP 5 suspected non–Alzheimer disease pathology; TOMC 5 Translational
Outpatient Memory Clinic; VUMC 5 VU University Medical Center.

The amyloid cascade hypothesis1,2 has so far dominated the Alzheimer disease (AD) field. Jack
et al.3,4 proposed a dynamic model that relates disease stage to the best established biomarkers of
AD pathology. Based on this, a National Institute on Aging–Alzheimer’s Association task force
developed recommendations for the diagnosis of preclinical AD based on biomarkers of amy-
loidosis and neuronal injury.5 Soon afterward, these criteria were operationalized and a
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sizable minority of cognitively normal elders
(23%) showed evidence of neuronal injury
and no b-amyloid (Ab) deposition.6 These
subjects were collectively considered to have
“suspected non-AD pathology” (SNAP).6

Patients with SNAP mild cognitive impair-
ment (MCI) were shown to have a high 1-year
rate of progression to dementia (21%–25%).7

Moreover, MRI markers were found to be use-
ful for predicting progression to dementia in
amyloid-negative patients with MCI,8 some of
whom may be considered to have SNAP, sug-
gesting that amyloid does not tell the whole
story regarding development of dementia.

Individuals with SNAP were comparable to
amyloid-positive cognitively normal individuals
based on various imaging markers, clinical fea-
tures, and risk factors, suggesting that the initial
appearance of brain-injury biomarkers may be
independent and indistinguishable from that
due to amyloidosis.9 Further evidence to support
amyloid-independent pathology in AD has
begun to accumulate.10–12 Moreover, recent
studies suggested that neurodegenerative pathol-
ogy could emerge through a nonamyloid-related
pathway even within regions usually affected by
AD.13,14 Given the major implications for AD
research and treatment,15 SNAP deserves more
in-depth investigation. The aim of this study was
to investigate predictors of progressive cognitive
deterioration in patients with MCI-SNAP.

METHODS Subjects. We selected patients from 2 indepen-

dent datasets: the Alzheimer’s Disease Neuroimaging Initiative

(ADNI, adni.loni.usc.edu) and a European Union (EU) dataset

of patients coming to observation at 4 independent European

memory clinics (Brescia, Italy [Translational Outpatient Memory

Clinic, TOMC]; Amsterdam, the Netherlands [VU University

Medical Center, VUMC]; Stockholm, Sweden [Karolinska

University Hospital Huddinge, KUHH]; and Munich, Germany

[Klinikum rechts der Isar der Technischen Universität München,

MUCH]). For a complete description of the 2 datasets, refer to

e-Methods on the Neurology® Web site at Neurology.org.

At baseline, all patients enrolled in this study (89 from ADNI,

39 from TOMC, 27 from VUMC, 17 from KUHH, and 29

from MUCH) had the syndromic diagnosis of MCI as described

by Petersen et al.,16 and had available MRI, [18F]-fluorodeoxyglu-

cose (FDG)-PET, and CSF sampling. Biomarker status was either

not available or not considered for the baseline diagnosis. The

cognitive profile was consistent with single- and multiple-domain

amnestic MCI.

Clinical visual inspection of routine MRI of all patients

included in the study indicated neither focal ischemic lesions

nor extensive microvascular disease that could be responsible

for the cognitive symptoms.

We pooled patients with MCI from ADNI and EU datasets,

and then categorized them into 4 groups based on amyloid

pathology and/or neurodegeneration (either hypometabolism or

hippocampal atrophy) biomarker abnormality: A2N2 (no amy-

loid pathology and no neurodegeneration), A1N2 (amyloid

pathology with no neurodegeneration), SNAP (A2N1 cases,

no amyloid pathology with neurodegeneration), and A1N1

(amyloid pathology with neurodegeneration) (table 1).

Patients with MCI were followed up to detect progressive

cognitive deterioration, defined as (1) losing more than 3 points

between first and last Mini-Mental State Examination (MMSE)

administration, (2) having dementia at follow-up, or (3) getting

a score less than 24 at last MMSE, as described in a previously

published report.17

Standard protocol approvals, registrations, and patient
consents. Ethics/radiation committee approval of any protocol

Table 1 Categorization of the patients with MCI included in this study based on biomarker abnormality

Pathologic event Brain amyloidosis Neurodegeneration

Biomarker (unit) CSF Ab42 (z scores) FDG-PET AD score
(t sum)

Hippocampal volume
(w scores)

Abnormality threshold z , 0 (,500 pg/mL in European dataset,
,192 pg/mL in ADNI)a

t . 13,481b w , 22.90c

MCI groups

A2N2 (no amyloid pathology, no neurodegeneration) Normal Both normal

A1N2 (amyloid pathology, no neurodegeneration) Abnormal Both normal

SNAP (no amyloid pathology, neurodegeneration) Normal Either abnormal

A1N1 (amyloid pathology, neurodegeneration) Abnormal Either abnormal

Abbreviations: Ab42 5 b-amyloid 1–42; AD 5 Alzheimer disease; ADNI 5 Alzheimer’s Disease Neuroimaging Initiative;
FDG 5 [18F]-fluorodeoxyglucose; MCI 5 mild cognitive impairment; SNAP 5 suspected non-AD pathology.
aCSF Ab42 concentration was determined by commercial ELISAs in Brescia, Amsterdam, Stockholm, and Munich samples
and xMAP Luminex platform with Innogenetics immunoassay kit–based reagents in ADNI samples, and was expressed in z
scores, computed as deviation from the threshold in SD units. For European memory clinics, thresholds for abnormality
were as follows: ,500 pg/mL in Brescia, ,550 pg/mL in Amsterdam, ,450 pg/mL in Stockholm, and ,643 pg/mL in
Munich. Thresholds were rescaled to ,500 pg/mL before transformation into z scores (for details see text).
b Threshold based on reference 30.
c Threshold based on reference 30.
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involved in the study was obtained at each of the ADNI and EU

participating centers. Written informed consent to share data for

scientific research purposes was collected from each participant.

Biological markers of amyloidosis and neurodegeneration.
We selected CSF Ab42 concentration as a biological marker of amy-

loidosis: lower than normal CSF Ab42 was assumed to be associated

with cortical fibrillar amyloid deposition. We assessed neurodegener-

ation using an 18F-FDG-PET index of AD-related hypometabolism

(the AD t-sum score)18 and MRI-based automated segmentation of

age-adjusted hippocampal atrophy (w scores). Information on

biomarkers procedure collection and normalization is available in

e-Methods.

Statistical analysis. We assessed differences in sociodemo-

graphic and clinical features, genotype, neurodegeneration, and

amyloidosis biomarkers among A2N2, A1N2, SNAP, and

A1N1 patients using analysis of variance (continuous variables)

or Pearson x2 test (dichotomous variables). We estimated cogni-

tive deterioration as number of MMSE points lost per year (last

MMSE score 2 baseline MMSE score/years of follow-up). We

computed differences in sociodemographic factors, clinical

features, and genotype between the SNAP and any other

patient group, as well as between the ADNI and EU datasets,

using independent Student t test (continuous variables) or

Pearson x2 test (dichotomous variables). We assessed differences

between progressor and nonprogressor SNAP patients using the

nonparametric, independent 2-group Mann–Whitney U test

(continuous variables) or x2 test (categorical variables), in order

to account for the small sample size.

To assess the risk of progressive cognitive deterioration in

A1N2, SNAP, and A1N1 patients, we plotted survival curves

and computed hazard ratios (both crude and adjusted by age,

MMSE scores, and APOE e4 carrier status) with pertinent 95%

confidence interval based on the A2N2 reference group (6 sep-

arate models). We assessed the significance of differences in

curves between SNAP and A1N1 or A1N2 groups by log-

rank test. We computed log-rank and Tarone tests for trend by

using the survtrend R function (available at https://www.ics.uci.

edu/;vqnguyen/stat255/Stat255Functions.R).

In addition, we plotted survival curves to investigate bio-

marker prognosis in SNAP patients. In this analysis, we divided

the SNAP group into subgroups based on the biomarker abnor-

mality thresholds reported in table 1 (FDG-PET and hippocam-

pal atrophy but not CSF Ab42, because all patients with

MCI-SNAP are negative for amyloidosis by definition), and we

assessed the significance of differences in curves between normal

and abnormal groups by log-rank test.

Finally, we adopted a generalized linear model for analyzing the

time to progression in A1N2, SNAP, and A1N1 groups, where

the time to progression was the dependent (gamma-distributed)

variable and Ab42, FDG-PET, and hippocampal volume were

independent continuous predictors. We investigated the linear rela-

tionship between biomarkers and time to progression by comput-

ing both Pearson and Spearman correlation coefficients.

We performed all statistical analyses using R software version

3.0.2, except for time-to-progression analysis, which was per-

formed with SPSS version 21.0 (IBM Corp., Armonk, NY).

RESULTS Of the 201 patients with MCI included in
the study, 41 were categorized A2N2, 41 A1N2,
34 SNAP, and 85 A1N1.

The 4 groups did not differ in age and sex. They
significantly differed in follow-up duration, baseline

and follow-up MMSE, as well as in MMSE yearly
change. The SNAP group showed significantly lower
baseline and follow-up MMSE scores than the
A2N2 group (p 5 0.007 and p 5 0.005), and sig-
nificantly higher follow-up MMSE scores than the
A1N1 group (p 5 0.020), but their annual MMSE
change was not significantly different from that of any
other group. The 4 groups significantly differed in
APOE e4 proportion; e4 proportion in the SNAP
group was significantly lower than that in the A1N2

and A1N1 groups (p 5 0.002 and p 5 0.005,
respectively). The proportion of progressive cognitive
deterioration was significantly different among the 4
groups; progression in SNAP was significantly more
frequent than in A2N2 (p5 0.005), more frequent
than in A1N2 (p 5 0.098), and less frequent than
in A1N1 (p 5 0.187) (table 2). The proportion of
progressive cognitive deterioration in the 4 groups did
not significantly change when restricting to APOE e4
carriers (69%, 40%, 36%, and 20% in A1N1,
SNAP, A1N2, and A2N2, respectively). Of the
19 individuals with SNAP who progressed to demen-
tia, 5 patients progressed to frontotemporal dementia
(FTD), 2 patients progressed to Lewy body dementia,
and the remaining 12 patients progressed to AD.
Among A2N2 progressors, half progressed to AD
(n 5 4) and the other half to FTD (n 5 5). All
amyloid-positive progressors but one A1N1 patient
(who progressed to FTD) progressed to AD.

The 4 groups significantly differed in CSF Ab42

concentrations, hypometabolism on FDG-PET, and
hippocampal volume. Hypometabolism in SNAP was
comparable to A1N1 (p5 0.154), while hippocam-
pal atrophy was more severe in SNAP (p 5 0.002).
CSF Ab42 concentrations were comparable to
A2N2 (p 5 0.107) (table 2). Biomarker distribu-
tions in the 4 groups, disaggregated by progression,
are displayed in figure 1.

Patients with MCI from the ADNI dataset (n 5

89) did not differ from patients from the EU dataset
(n 5 112) in baseline MMSE score, follow-up dura-
tion, follow-up MMSE score, MMSE yearly change,
APOE genotype, and proportion of progressive cog-
nitive deterioration. EU patients were significantly
younger than ADNI patients, and the EU dataset
had a significantly higher proportion of females.
The proportion of A1N2 patients in ADNI was
significantly higher than in EU, while the proportion
of A2N2 and SNAP patients was significantly
lower; the proportion of A1N1 was comparable in
the 2 datasets (table e-1).

SNAP and A1N1 patients had significant risk of
progressive cognitive deterioration, based on A2N2

reference group, while A1N2 patients did not
(figure 2). The SNAP survival curve was significantly
different from A1N1 but not A1N2 curves
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(log-rank p 5 0.016 and 0.173, respectively). Both
log-rank and Tarone tests for trend were significant
(p , 0.001, both tests). Figure e-1 shows the risk of
progressive cognitive deterioration in the 4 groups in
APOE e4 carriers and noncarriers, separately.

In the SNAP group, 5 of 34 subjects were FDG-
positive only, 16 were hippocampus-positive only,
and 13 were positive for both markers of neurodegen-
eration. SNAP patients with abnormal FDG-PET
showed significantly higher risk of progressive cogni-
tive deterioration than patients with normal FDG-
PET, and the 2 groups showed significantly different
survival distributions (log-rank p 5 0.004). In con-
trast, risk of progressive cognitive deterioration in
SNAP patients was independent of hippocampal atro-
phy (figure e-2). Progressor and nonprogressor SNAP
patients did not differ in age, sex, baseline MMSE
score, APOE, and CSF Ab42 concentration, while
they significantly differed in follow-up MMSE score
and MMSE yearly change, as expected. Progressor
SNAP patients had significantly lower cortical metab-
olism on FDG-PET and lower hippocampal volume
than nonprogressor SNAP patients, although the dif-
ference was not significant (table e-2).

In A1N2 and A1N1, none of the biomarkers
predicted time to progression. In SNAP patients,
lower hypometabolism predicted longer time to
progression: 10,000-unit decrease in FDG-PET t
sum was associated with 4-month-longer time to

progression (p 5 0.086) (table e-3). Lower time to
progression was linearly correlated with greater hypo-
metabolism (Pearson correlation coefficient r5 0.42,
p 5 0.073; Spearman correlation coefficient r 5

0.42, p5 0.076) (figure 3). There was a trend toward
linear correlation of lower time to progression with
larger hippocampi (r 5 20.33, p 5 0.162; r 5

20.36, p 5 0.134), while no correlation was found
between time to progression and CSF Ab concentra-
tion (r 5 20.12, p 5 0.637; r 5 0.06, p 5 0.793)
(figure e-3).

DISCUSSION In this study, we showed that the risk
of progressive cognitive deterioration in patients with
MCI who had neurodegeneration but no amyloid
pathology (SNAP) was higher than in patients with
MCI who had no neurodegeneration and no amyloid
pathology (A2N2) but comparable to patients with
MCI who had both neurodegeneration and amyloid
pathology (A1N1). In SNAP patients, greater hypo-
metabolism was linearly correlated with lower time to
progression. In A1N2 and A1N1 patients, none of
the biomarkers predicted time to progression.

Since their recent description and given potential
implications, SNAP cases have generated great inter-
est. SNAP cases have recently been described in a
population of cognitively normal elderly9 and were
found to have lower prevalence of the APOE e4 gen-
otype than persons with preclinical AD, but were

Table 2 Descriptive features of the 201 patients with MCI included in this study

A2N2 (n 5 41) A1N2 (n 5 41) SNAP (n 5 34) A1N1 (n 5 85) p

Age, y 69.3 6 10.0 73.8 6 8.4 70.6 6 9.2 70.5 6 8.5 0.117

Sex, female 19 (46) 22 (54) 11 (32) 37 (44) 0.319

Follow-up time, mo 30.2 6 17.2 33.2 6 11.8 26.4 6 16.8 23.8 6 11.9 0.003

Baseline MMSE score 27.6 6 1.7 27.2 6 1.8 26.6 6 1.5a 26.5 6 1.7 0.004

Last follow-up MMSE scoreb 27.0 6 2.9 25.7 6 3.3 24.7 6 3.9a,c 22.6 6 4.7 ,0.001

MMSE yearly changeb 20.5 6 1.9 20.9 6 1.6 22.2 6 5.6 23.3 6 5.1 0.002

APOE e4 genotype carriersd 9 (29) 28 (70) 10 (31)c,e 52 (61) ,0.001

Progressors 8 (11) 14 (34) 19 (56)a 60 (71) ,0.001

CSF Ab42, z scores 1.2 6 0.8 20.9 6 0.5 0.9 6 0.7c,e 20.8 6 0.5 ,0.001

FDG-PET AD score, t sum 5,282 6 2,976 6,975 6 2,940 23,052 6 20,019a,e 29,150 6 22,823 ,0.001

Hippocampal volume, w scores 20.3 6 1.6 20.8 6 1.6 24.2 6 2.1a,c,e 22.8 6 2.2 ,0.001

Abbreviations: AD 5 Alzheimer disease; FDG 5 [18F]-fluorodeoxyglucose; MCI 5 mild cognitive impairment; MMSE 5 Mini-Mental State Examination;
SNAP 5 suspected non-AD pathology.
Values are mean 6 SD or frequency (percentage). Progressors are defined as MCI losing more than 3 points between first and last MMSE administration,
having dementia at follow-up, or getting a score ,24 at last MMSE administration. The p denotes significance difference among all groups on 1-way
analysis of variance (continuous variables) or x2 test (categorical variables). Significant difference of SNAP with a, c, and e on independent t test (continuous
variables) or x2 test (categorical variables).
a A2N2.
bMissing data for one MCI-SNAP and 14 A1N1 patients.
c A1N1.
dMissing data for 4 A2N2, 1 A1N2, 2 SNAP, and 2 A1N1 patients.
e A1N2.
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almost indistinguishable from persons with both neu-
rodegeneration and amyloidosis on FDG-PET
regional hypometabolism, MRI regional brain

volume loss, cerebrovascular lesions on imaging, vas-
cular risk factors, and a-synucleinopathy–related fea-
tures. This suggests that the initial appearance of
brain-injury biomarkers in cognitively normal elderly
individuals may not depend on amyloidosis.9 In the
current study, SNAP patients with MCI had a signif-
icantly lower proportion of APOE e4 genotype than
both A1N1 and A1N2 patients, in line with find-
ings on cognitively healthy elders with SNAP,9 but
significantly more severe hippocampal atrophy than
A1N1 patients.

There is only one previous study investigating pro-
gression to dementia in patients with MCI-SNAP,
showing that 1-year rate of progression of SNAP
was significantly higher than A2N2 and A1N2,
and comparable to A1N1MCI patients.7 Our find-
ings are overall in line with these, despite differences
of demographics (our patients are 6 and 11 years
younger than patients from ADNI and Mayo Clinic
Study of Aging included in the other study) and study
design (the other study had a shorter follow-up by
about a half). The 2 studies are also in agreement
in the proportion of the e4 allele of APOE in
MCI-SNAP, which was significantly lower than
in amyloid-positive MCI, and comparable to
biomarker-negative patients. However, our findings
are in contrast to previous studies that found a relative
cognitive stability of cognitively normal elders with
SNAP and showed that their cognitive progression
was markedly lower than in amyloid-positive per-
sons.19,20 Such discrepancy suggests that patients with
MCI-SNAP may represent a different group than
cognitively normal elders with SNAP.

The pathophysiology of cognitive impairment in
MCI-SNAP is still a matter of debate. It can be
hypothesized that the category represents a mixed
bag of several different types of amyloid-unrelated
pathologies that may resemble AD clinically, such
as hippocampal sclerosis, argyrophilic grain disease,
tangle-only dementia, frontotemporal degeneration,
or Lewy body disease, in line with the fact that a
nonnegligible minority of patients diagnosed with
clinically probable AD do not meet neuropathologic
criteria for AD at histopathology.21 The poor stability
of current assays for CSF Ab42 and the uncertainty of
abnormality thresholds22 suggest that a proportion of
MCI-SNAP diagnoses could be false-negative and
these patients could actually have underlying amyloid
pathology.

We showed that in MCI-SNAP progressors,
FDG-PET almost significantly predicted time to pro-
gression; CSF Ab42 was not predictive of progressive
cognitive deterioration, in line with previous findings
in amyloid-negative patients with MCI8 and the
notion that brain amyloidosis is not related to cogni-
tive symptoms.23 Despite that these findings from a

Figure 1 Biomarker abnormality in A2N2, A1N2, SNAP, and A1N1MCI patient
groups, disaggregated by progressive cognitive deterioration

Triangles denote progressors, while circles denote nonprogressors. Data were jittered to
prevent overplotting. For FDG-PET AD t-sum biomarker, logarithmic scores (log10) were
polarized to improve visualization, with abnormal scores below the threshold line and toward
the negative end of the distribution. Ab425 b-amyloid 1–42; AD5 Alzheimer disease; FDG5

[18F]-fluorodeoxyglucose; MCI 5 mild cognitive impairment; SNAP 5 suspected non-AD
pathology.
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small sample of MCI-SNAP progressors should be
considered preliminary, they could represent relevant
information toward understanding underlying SNAP
pathology. We propose that the SNAP group could
include 2 different subgroups: (1) patients with severe
cortical damage and no hippocampal atrophy, who
might have underlying frontotemporal degeneration
or tangle-only dementia, and rapidly progress to
dementia; and (2) patients with hippocampal atrophy
but relatively preserved cortical metabolism, who
might have either hippocampal sclerosis or argyro-
philic grain disease. This hypothesis is in line with
the observation that medial temporal lobe atrophy is
related to primary degenerative hippocampal pathol-
ogy in pathologically confirmed very old patients24

who progress to dementia remarkably slowly.
Current findings could have been influenced by

the choice of biomarkers. CSF Ab42 protein concen-
tration was included as an established marker of amy-
loid deposition.25 Although we did not measure
cortical amyloidosis (because of the paucity of amy-
loid imaging data available), previous studies dem-
onstrated good concordance between CSF Ab42

and cortical amyloid, assessed by [11C]-Pittsburgh

compound B–PET.26,27 Both hippocampal atrophy
on MRI and t sum on FDG-PET are relatively spe-
cific topographic markers of AD neurodegeneration,
and are by definition not specific to SNAP. However,
defining SNAP patients with non-SNAP–specific
topographic measures will only lead to selecting those
SNAP patients with the most severe degrees of neuro-
degeneration, i.e., will lead to select a SNAP group
including relatively few false-positives. This might
have caused us to miss SNAP patients with milder
degrees of neurodegeneration, but assures that those
SNAP patients that we selected did indeed have
neurodegeneration.

This study has some strengths and limitations.
First, the group of 201 patients with MCI under
study is the largest available with all 3 core biomarkers
available at baseline (CSF Ab42, MRI, and FDG-
PET), paired with information on progressive cogni-
tive deterioration on a reasonably long follow-up (30
months on average). Despite the large size of the
overall MCI group, the relatively low proportion of
SNAP patients results in a relatively small sample size,
requiring caution in the interpretation of the results.
However, to our knowledge, there is only one previ-
ous study7 reporting a similar case series (n 5 36
SNAP with MCI from Mayo Clinic Study of Aging
and n 5 10 SNAP with MCI from ADNI), followed
for shorter follow-up (15 and 12 months on average
in Mayo Clinic Study of Aging and ADNI cohorts,
respectively). Second, CSF total tau protein concen-
tration, despite being an established marker of neuro-
degeneration, was not included in the study because
of the paucity of available data (CSF tau was missing
for 58 patients with MCI from the EU dataset).
Although no measure of cerebrovascular disease
(either risk factor or MRI measure) was included
because of lack of consistent data across centers, clin-
ical visual inspection of routine MRI of all patients
included in the study indicated neither focal ischemic
lesions nor extensive microvascular disease that could
be responsible for the cognitive symptoms. It would
have been valuable to assess differences in memory
features in the SNAP group compared with the other
groups. Unfortunately, this was not possible because
of the multicenter nature of the study: heterogeneous
neuropsychological tests with heterogeneous norms
were administered in different centers, and pooling
and standardizing neuropsychological data, albeit
possible, was beyond the scope of this study. Finally,
ADNI patients were significantly older than EU
patients and had a lower proportion of SNAP, prob-
ably reflecting the different recruitment strategies of
ADNI and dementia research centers in the United
States and Europe and the interlaboratory variability
in methods and protocols used to assess CSF
Ab42 concentration. However, standard operating

Figure 2 Risk of progressive cognitive deterioration in 34 SNAP, 41 A1N2, and
85 A1N1 patients with MCI, compared with 41 A2N2 patients with
MCI as the reference

The 1 denotes censored cases. Adjusted by age, baseline Mini-Mental State Examination
score, and APOE e4 carrier status. Crude and adjusted HRs were computed in 6 separate
Cox regression models. SNAP and A1N1 patients had significant risk of progressive cogni-
tive deterioration, while A1N2 patients did not. CI 5 confidence interval; HR5 hazard ratio;
MCI 5 mild cognitive impairment; SNAP 5 suspected non–Alzheimer disease pathology.
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preanalytical procedures for CSF biomarkers are just
now being developed28,29 and cannot be applied to
historical cohorts.

We provided further evidence that neurodegener-
ative dementia pathology can emerge and develop
through nonamyloid pathways. We showed that
MCI patients with SNAP are similar to A1N1

MCI patients in terms of risk of progressive cognitive
deterioration, suggesting that SNAP prognosis can be
challenging. However, patients with SNAP featured a
specific risk progression profile, confirming a specific
underlying pathology other than AD. The identifica-
tion of SNAP patients is of particular interest to clin-
ical trialists. Recent clinical trials with anti-amyloid
drugs (bapineuzumab and solanezumab) have re-
cruited up to 30% amyloid-negative patients, which
might have diluted their therapeutic effect. Future
studies, larger samples, and pathologic confirmation
are needed to verify or falsify the hypothesis that the
MCI-SNAP group does indeed comprise 2 distinct
subgroups, denoted by different cortical damage/hip-
pocampal atrophy and different time to progression,
and ultimately different neuropathology.
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Figure 3 Linear correlation between time to progression and FDG-PET in the 19
SNAP progressors

FDG-PET t-sum scores were polarized for more negative values to denote greater abnor-
mality. Lower time to progression was linearly correlated with greater hypometabolism.
AD 5 Alzheimer disease; FDG 5 [18F]-fluorodeoxyglucose; MCI 5 mild cognitive impairment;
SNAP 5 suspected non-AD pathology.
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